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Abstract

Quantitative Structure–Activity Relationship (QSAR) modeling is an essential computational approach used 

to predict the biological activity of chemical compounds based on their molecular structure. It enables rapid 

virtual screening, reduces the need for laboratory testing, and supports efficient lead identification and 

optimization in drug discovery. QSAR models are developed through a systematic workflow that includes 

dataset preparation, descriptor calculation, feature selection, model building, and validation. With the 

advancement of computational tools, 3D-QSAR and machine-learning-based QSAR models have 

significantly improved predictive accuracy and reliability. This review provides a comprehensive overview of 

the principles, methods, applications, and future directions of QSAR modeling in modern drug development.  
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1. Introduction 

Drug discovery is a complex, expensive, and time-consuming process that traditionally relies on experimental 

screening of large chemical libraries. This approach often leads to high failure rates due to poor 

pharmacological activity, toxicity, or unfavorable pharmacokinetic properties [1]. To overcome these 

challenges, computational drug design methods have become increasingly important. Among these, 

Quantitative Structure–Activity Relationship (QSAR) modeling has emerged as one of the most widely used 

tools for predicting biological activity based on the structural and physicochemical features of molecules [2]. 

QSAR is built on the hypothesis that the biological activity of a compound is a function of its chemical 

structure. By converting molecular structures into numerical descriptors and correlating them with biological 

responses through statistical or machine-learning models, QSAR enables researchers to identify promising 

drug candidates without extensive laboratory testing [3]. This significantly reduces development costs, 

accelerates lead optimization, and improves decision-making in early drug discovery. 
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Modern advancements—including machine learning, high-throughput screening data, and 3D-QSAR 

techniques—have further strengthened the predictive capability of QSAR models, making them integral to the 

design of new therapeutic agents across various disease areas [4]. The aim of this review is to explore the 

principles, methodologies, applications, strengths, limitations, and future prospects of QSAR in drug 

discovery and development. 

2. Fundamentals of QSAR Modeling 

2.1 Definition of QSAR 

Quantitative Structure–Activity Relationship (QSAR) modeling is a computational technique that establishes 

a mathematical relationship between the chemical structure of a compound and its biological activity. The 

basic principle assumes that molecules with similar structures exhibit similar pharmacological effects, 

allowing biological responses to be predicted from structural information alone [5]. This makes QSAR a 

powerful tool for identifying new drug candidates even before synthesis. 

2.2 Types of QSAR Models 

QSAR approaches have evolved significantly, resulting in multiple types based on dimensionality and the 

nature of descriptors used. 

a. 1D-QSAR 

Uses simple physicochemical parameters such as pKa, logP, or molecular weight to correlate with biological 

activity. It is the earliest and simplest form of QSAR but has limited structural representation [6]. 

b. 2D-QSAR 

Also known as classical QSAR, it incorporates descriptors such as hydrophobicity (Hansch analysis), 

electronic parameters, steric factors, and fragment contributions. Methods like Multiple Linear Regression 

(MLR) and Free–Wilson analysis are commonly used to build models [7]. 

c. 3D-QSAR 

Three-dimensional QSAR evaluates how spatial arrangement and molecular fields affect activity. The most 

widely used 3D-QSAR methods are: 
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 CoMFA (Comparative Molecular Field Analysis) 

Examines steric and electrostatic fields around aligned molecules [8]. 

 CoMSIA (Comparative Molecular Similarity Indices Analysis) 

Incorporates additional fields such as hydrophobicity and hydrogen-bond donor/acceptor features for 

improved accuracy [9]. 

d. Higher-Dimensional QSAR (4D, 5D, 6D QSAR) 

Advanced QSAR models integrate molecular dynamics, multiple conformations, solvation effects, and 

receptor flexibility. These approaches improve prediction reliability but require higher computational 

resources [10]. 

2.3 Basic Principle of QSAR Equation 

A classical QSAR model generally follows the mathematical form: 

Activity = f(Physicochemical Descriptors + Structural Descriptors) 

Where: 

 Activity = biological response 

 Descriptors = numerical representation of molecular features 

 f = regression or machine-learning technique 

The quality of a QSAR model depends on: 

• relevance of descriptors 

• dataset quality 

• statistical validation 

• predictive performance on external compounds [11] 

QSAR equations allow researchers to predict the activity of untested molecules and guide structural 

modifications for improved potency or lower toxicity. 
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3. Molecular Descriptors Used in QSAR 

Molecular descriptors are numerical values that represent the structural, physicochemical, and geometric 

properties of compounds. They are essential for building QSAR models because they convert chemical 

structures into machine-readable data. The quality of these descriptors directly influences the accuracy and 

predictability of a QSAR model [12]. 

3.1 Physicochemical Descriptors 

Physicochemical descriptors represent intrinsic chemical properties that often correlate strongly with 

pharmacokinetics and pharmacodynamics. 

✔ LogP (Partition Coefficient) 

Indicates lipophilicity, which affects membrane permeability and drug absorption [13]. 

✔ pKa 

Represents ionization behavior of functional groups, influencing solubility and receptor binding [14]. 

✔ Molecular Weight (MW) 

Higher MW compounds often have reduced permeability and may violate drug-likeness rules [15]. 

✔ Polar Surface Area (PSA) 

Measures the surface area formed by polar atoms; strongly associated with oral bioavailability and blood–

brain barrier penetration [16]. 

Physicochemical descriptors help identify optimal ranges for drug-like properties. 

3.2 Structural Descriptors 

Structural descriptors capture topological and connectivity-based information about molecules. 

✔ Topological Indices 

Include Wiener index, Zagreb index, and Kier–Hall indices; these reflect branching, molecular shape, and 

connectivity patterns [17]. 

✔ Connectivity Indices 

Describe how atoms are linked within the structure and help differentiate isomers with similar formulas but 

different shapes. 

These descriptors are essential for modeling activity dependent on 2D structure. 

3.3 Quantum Chemical Descriptors 

Quantum descriptors originate from quantum mechanical calculations and describe electronic distribution in 

molecules. 

✔ HOMO (Highest Occupied Molecular Orbital) 

Indicates electron-donating ability. 
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✔ LUMO (Lowest Unoccupied Molecular Orbital) 

Indicates electron-accepting ability. 

✔ Dipole Moment 

Reflects charge separation within a molecule and influences binding affinity [18]. 

Quantum descriptors are particularly useful for understanding drug–receptor interactions. 

3.4 Geometrical Descriptors 

Geometric descriptors represent 3D characteristics of molecules. 

These include: 

 Molecular volume 

 Surface area 

 Shape indices 

 Diameter and radius measurements 

Geometrical descriptors help improve prediction accuracy in 3D-QSAR and pharmacophore-based modeling 

[19]. 

Why Descriptors Matter in QSAR 

A reliable QSAR model requires descriptors that are: 

 Relevant to the biological activity 

 Non-redundant 

 Statistically significant 
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 Chemically interpretable 

Descriptor selection is one of the most critical steps in QSAR modeling, as irrelevant descriptors reduce model 

performance. 

4. Methods Used in QSAR Model Development 

QSAR model development follows a systematic workflow to ensure that the predictions are reliable, 

reproducible, and statistically significant. The accuracy of a QSAR model depends on how effectively each 

step—data preparation, descriptor selection, model building, and validation—is performed [20]. 

4.1 Data Collection and Curation 

High-quality data is the foundation of any QSAR model. Poor or inconsistent datasets lead to inaccurate 

predictions. 

✔ Data Sources 

Common databases include: 

 ChEMBL 

 PubChem 

 DrugBank 

 BindingDB 

These provide experimentally validated bioactivity data required for model construction. 

✔ Data Cleaning Steps 

 Removal of duplicate compounds 

 Correction of structural errors 

 Standardization of chemical representations (tautomer correction, charge normalization) 

 Filtering compounds outside activity ranges 

 Outlier detection using statistical tools 

Proper curation prevents noise and improves model robustness [21]. 
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4.2 Descriptor Calculation 

Descriptors convert chemical structures into numerical values that represent their features. 

Common descriptor calculation tools include: 

 PaDEL-Descriptor 

 Dragon 

 Molecular Operating Environment (MOE) 

 ChemOffice 

 RDKit 

These tools generate thousands of descriptors including physicochemical, quantum mechanical, and 

topological descriptors [22]. 

Descriptor quality strongly impacts the predictive performance of the model. 

4.3 Feature Selection Methods 

Feature selection removes redundant or irrelevant descriptors to prevent overfitting and improve 

interpretability. 

✔ Principal Component Analysis (PCA) 

Reduces dimensionality while retaining maximum variance. 

✔ Genetic Algorithms (GA) 

Uses evolutionary strategies to select the most relevant descriptors for the target activity [23]. 

✔ Stepwise Regression 

Adds or removes descriptors sequentially based on statistical significance. 

✔ Variance Inflation Factor (VIF) 

Removes descriptors that show multicollinearity. 

Feature selection ensures the model remains simple, interpretable, and statistically sound. 

4.4 Model Building Techniques 

Several statistical and machine-learning algorithms are used to build QSAR models depending on dataset type 

and complexity. 

✔ Multiple Linear Regression (MLR) 

Simple and interpretable; widely used for classical QSAR. 

✔ Partial Least Squares (PLS) 

Handles collinearity and high-dimensional data effectively. 

✔ k-Nearest Neighbors (kNN) 

Predicts based on similarity between molecules. 
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✔ Artificial Neural Networks (ANN) 

Captures nonlinear relationships; useful in complex datasets [24]. 

✔ Support Vector Machines (SVM) 

Provides excellent performance with optimal hyperplane classification. 

The choice of algorithm depends on dataset size, descriptor type, and desired model interpretability. 

4.5 Internal and External Validation 

Model validation ensures that the QSAR model is reliable and has real predictive power. 

✔ Internal Validation 

Measures model stability using techniques such as: 

 Leave-One-Out Cross Validation (LOO) 

 Leave-Many-Out (LMO) 

 k-fold cross-validation 

Internal metrics include R², Q², and RMSE. 

✔ External Validation 

Evaluates model predictive ability using an independent test set not used in training. 

Metrics include: 

 R²_pred 

 MAE 

 Concordance Correlation Coefficient 

A model is considered acceptable only if it performs well in both internal and external validation [25]. 

5. 3D-QSAR Approaches 

3D-QSAR methods analyze how the three-dimensional arrangement of atoms and molecular fields influences 

the biological activity of compounds. Unlike 2D-QSAR—which relies on physicochemical and structural 

descriptors—3D-QSAR incorporates spatial orientation and intermolecular interactions, making it more 

reliable for receptor-binding predictions [26]. 

3D-QSAR is widely used in lead optimization, SAR interpretation, and understanding critical molecular 

regions required for activity. The two most established and widely used 3D-QSAR techniques are 

Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices 

Analysis (CoMSIA). 

5.1 Comparative Molecular Field Analysis (CoMFA) 

CoMFA evaluates steric and electrostatic interactions surrounding aligned molecules to determine which 

regions enhance or reduce biological activity. 

✔ Key Steps in CoMFA 

1. Molecular Alignment – All molecules must be aligned to a common pharmacophore template. 

2. Grid Generation – A 3D grid is placed around the aligned molecules. 

http://www.jaafr.org/


                                                                 © 2025 JAAFR | Volume 3, Issue 11 November 2025 | ISSN: 2984-889X | JAAFR.ORG 

JAAFR2511357 Journal of Advance and Future Research (www.jaafr.org)  

 

221 

3. Field Calculation – Steric and electrostatic fields are calculated at each grid point. 

4. PLS Analysis – Partial Least Squares regression establishes relationships between fields and activity. 

✔ Advantages 

 High interpretability 

 Useful contour maps for medicinal chemists 

 Strong predictive ability for structurally related compounds [27] 

✔ Limitations 

 Highly dependent on molecular alignment 

 Sensitive to conformational changes and grid placement 

5.2 Comparative Molecular Similarity Indices Analysis (CoMSIA) 

CoMSIA extends the CoMFA concept by analyzing additional molecular similarity fields. 

✔ Similarity Index Fields Used in CoMSIA 

 Steric 

 Electrostatic 

 Hydrophobic 

 Hydrogen-bond donor 

 Hydrogen-bond acceptor 
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✔ Advantages Over CoMFA 

 Less sensitive to alignment errors 

 Generates smoother and more interpretable contour maps 

 Better representation of hydrophobic and H-bond interactions [28] 

✔ Applications 

CoMSIA is commonly applied in: 

 Identifying key binding regions in drug candidates 

 Optimization of lead compounds 

 Mapping critical hydrophobic and hydrophilic zones around molecules 

5.3 Other 3D-QSAR Techniques 

In addition to CoMFA and CoMSIA, several modern methods are used to enhance prediction quality. 

✔ Pharmacophore-based 3D-QSAR 

Uses 3D arrangements of key features such as hydrogen-bond donors, acceptors, aromatic rings, and 

hydrophobic centers to predict activity. 

✔ Grid-Independent Descriptors (GRIND) 

Avoids molecular alignment issues and uses distance-based descriptors [29]. 

✔ Molecular Field Topology Analysis (MFTA) 

Combines topological and 3D field information to generate robust predictive models. 

These newer approaches improve the robustness of 3D-QSAR by reducing alignment dependency and 

incorporating multiple molecular properties. 

6. Machine Learning and AI in QSAR 

Machine learning (ML) and artificial intelligence (AI) have significantly advanced QSAR modeling by 

enabling the analysis of large, complex datasets and capturing nonlinear relationships that traditional statistical 

methods cannot detect. With the availability of big chemical datasets and computational power, ML-based 

QSAR models now offer higher predictive accuracy, greater robustness, and broader applicability across 

diverse chemical spaces [30]. 

AI-driven QSAR is increasingly used in early-stage drug discovery for virtual screening, lead optimization, 

prediction of ADMET properties, and identifying toxicological risks before synthesis. 

6.1 Traditional Machine-Learning Algorithms in QSAR 

Several classical ML algorithms remain widely used due to their balance of performance, interpretability, and 

computational efficiency. 

✔ Decision Trees (DT) 

Provide clear interpretability by splitting data into hierarchical decision rules. Useful for small to medium-

sized datasets [31]. 
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✔ Random Forest (RF) 

An ensemble of decision trees that reduces overfitting and improves accuracy. Highly effective for descriptor-

rich datasets. 

✔ Support Vector Machines (SVM) 

One of the most popular ML methods for QSAR. Creates optimal hyperplanes to separate data and handles 

high-dimensional descriptors well [32]. 

✔ k-Nearest Neighbors (kNN) 

Predicts activity based on similarity to the nearest compounds. Simple yet effective for similarity-driven drug 

design. 

These algorithms have formed the backbone of computational drug discovery for decades. 

6.2 Deep Learning Methods in QSAR 

Deep learning (DL) models excel in discovering complex nonlinear patterns in chemical datasets. 

✔ Artificial Neural Networks (ANNs) 

Multilayer networks capable of modeling nonlinear relationships between descriptors and activity. Useful for 

large datasets but prone to overfitting without proper tuning [33]. 

✔ Convolutional Neural Networks (CNNs) 

Can analyze molecular images, fingerprints, and 3D voxel grids. Widely applied in structure-based QSAR and 

binding affinity prediction. 

✔ Recurrent Neural Networks (RNNs) / LSTMs 

Process sequential representations such as SMILES strings, enabling direct learning from chemical structure 

text. 

✔ Graph Neural Networks (GNNs) 

One of the most modern approaches. 

They treat molecules as graphs (atoms = nodes, bonds = edges) and learn chemical features directly without 

descriptors [34]. 

GNNs have shown exceptional performance because they learn structural relationships natively from 

molecular graphs. 

6.3 Advantages of ML- and AI-Based QSAR 

 Handles high-dimensional descriptor sets efficiently 

 Improved predictive accuracy over classical QSAR 

 Learns complex nonlinear relationships 

 Reduces need for manual descriptor engineering (especially in GNN-based models) 

 Suitable for large datasets obtained from high-throughput screening 
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 Improves virtual screening hit rates, saving time and cost in drug discovery [35] 

6.4 Challenges and Limitations 

Despite significant progress, ML- and AI-based QSAR approaches face several challenges. 

✔ Data Quality Issues 

Noisy, imbalanced, or inconsistent datasets reduce predictive accuracy. 

✔ Interpretability Problems 

Deep learning models often act as “black boxes,” making it difficult to understand which features drive 

predictions. 

✔ Overfitting Risk 

Large descriptor sets with limited data can cause models to learn noise instead of patterns. 

✔ Generalizability 

Models may perform poorly when predicting activity for structurally novel compounds. 

Addressing these limitations requires better curation, explainable AI (XAI) techniques, and integration of 

experimental validation. 

6.5 Machine Learning and AI-Driven QSAR Models 

Machine Learning (ML) and Artificial Intelligence (AI) have significantly enhanced the predictive capabilities 

and automation potential of QSAR modeling. Traditional QSAR relied mainly on linear statistical techniques 

such as multiple linear regression, which often fail to capture complex nonlinear relationships between 

molecular descriptors and biological activity. In contrast, ML algorithms can learn intricate patterns from high-

dimensional chemical data, allowing the development of more robust and generalizable models [37]. 

Common ML methods used in QSAR include Random Forests (RF), Support Vector Machines (SVM), k-

Nearest Neighbors (k-NN), Gradient Boosting Machines (GBM), and Artificial Neural Networks (ANN). 

RF offers strong performance on noisy datasets and provides variable-importance metrics, making it widely 

used in ligand-based modeling [38]. SVM is effective for datasets with clear boundaries between active and 
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inactive molecules, especially when coupled with kernel functions to capture nonlinear mappings [39]. ANN 

and deep learning models, including convolutional and graph neural networks (GNNs), have shown 

remarkable performance due to their ability to automatically extract molecular features without predefined 

descriptors [40]. 

 

Deep learning–based QSAR approaches represent a major advancement in modern drug design. GNNs treat 

molecules as graphs and learn atom-level interactions directly, bypassing the need for handcrafted descriptors. 

These models have demonstrated superior performance in activity prediction, toxicity profiling, and virtual 

screening, especially when trained on large chemical libraries [41]. Reinforcement learning has also emerged 

as a powerful tool for de novo molecule generation, enabling AI systems to design novel compounds optimized 

for potency, selectivity, and ADMET properties [42]. 

Despite their advantages, ML-driven QSAR models face challenges such as data imbalance, overfitting, 

limited interpretability, and the requirement for large curated datasets. Techniques like feature importance 

analysis, SHAP (Shapley Additive Explanations), and attention mechanisms are increasingly used to improve 

model transparency and trust in predictions [43]. As computational power continues to grow, AI and ML are 

expected to further transform QSAR by enabling automated model building, ultra-large virtual screening, and 

integration with multi-omics data. 

7. Applications of QSAR in Drug Discovery and Development 

QSAR modeling plays a crucial role in multiple stages of drug discovery, from early screening to lead 

optimization. By providing predictive insights into biological activity, toxicity, and pharmacokinetic 

properties, QSAR helps reduce experimental workload and accelerates the identification of promising 

chemical entities [28]. Its widespread applications span therapeutic target classes, pharmacological pathways, 

and toxicity assessment frameworks. 
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7.1 Lead Identification 

QSAR assists in screening large chemical libraries to prioritize molecules that are likely to show biological 

activity. Instead of synthesizing and testing thousands of compounds, researchers can narrow down candidates 

using predictive models based on structural descriptors [12]. Machine learning–enhanced QSAR models 

further improve the accuracy of early-stage hit prediction, especially for receptor-binding studies and enzyme 

inhibition assays [39]. 

7.2 Lead Optimization 

During lead optimization, QSAR models help refine molecular structures to enhance potency, selectivity, and 

drug-like properties. Descriptors related to hydrophobicity, electronic character, and molecular shape guide 

chemists in modifying functional groups to achieve better biological responses [16]. Iterative cycles of QSAR 

prediction and molecular redesign significantly reduce development time and cost. 

7.3 ADMET Prediction 

A major advantage of QSAR is its ability to predict Absorption, Distribution, Metabolism, Excretion, and 

Toxicity (ADMET) properties before laboratory testing. QSAR models are extensively used to evaluate 

hepatotoxicity, cardiotoxicity, mutagenicity, blood–brain barrier permeability, and metabolic stability [23]. 

This reduces drug attrition rates by eliminating compounds with poor safety profiles. 

7.4 Toxicity and Environmental Risk Assessment 

Regulatory agencies often rely on QSAR for evaluating the safety of chemicals when experimental testing is 

limited. Predictive toxicology frameworks use QSAR to assess carcinogenicity, aquatic toxicity, skin 

sensitization, and endocrine disruption [18]. Environmental chemistry programs also use QSAR to estimate 

the persistence and bioaccumulation potential of industrial chemicals. 

7.5 Virtual Screening and High-Throughput Workflows 

QSAR models are frequently integrated with virtual screening pipelines, allowing significant computational 

filtering of chemical space. When combined with molecular docking or pharmacophore modeling, QSAR 

enhances the selection of compounds with optimal binding affinity and physicochemical compatibility [20]. 

High-throughput QSAR (HT-QSAR) approaches can evaluate millions of compounds in silico, making them 

fundamental in modern drug design. 

8. Challenges and Limitations of QSAR Modeling 

Despite its wide applicability and success, QSAR modeling faces several scientific, computational, and 

methodological limitations. These challenges often arise from the complexity of biological systems, data 

quality issues, and model interpretability constraints. Understanding these limitations is essential for 

developing reliable and reproducible QSAR models in drug discovery [12]. 

http://www.jaafr.org/


                                                                 © 2025 JAAFR | Volume 3, Issue 11 November 2025 | ISSN: 2984-889X | JAAFR.ORG 

JAAFR2511357 Journal of Advance and Future Research (www.jaafr.org)  

 

227 

 

8.1 Data Quality and Dataset Limitations 

The reliability of a QSAR model is directly dependent on the quality of the dataset used to build it. Incomplete, 

inconsistent, or noisy biological activity data can lead to weak predictive performance [18]. Experimental 

variability between laboratories, measurement errors, and differences in assay conditions introduce additional 

uncertainty [23]. Furthermore, small datasets limit the ability of machine learning algorithms to learn complex 

structure–activity relationships. 

8.2 Descriptor Selection and Dimensionality Issues 

Molecular descriptors represent chemical information numerically, but selecting meaningful descriptors is 

challenging. Too many descriptors cause overfitting, while too few descriptors reduce model accuracy [16]. 

High-dimensional descriptor spaces also complicate model training and require feature selection techniques 

such as PCA or recursive feature elimination [39]. 

8.3 Overfitting and Model Generalization 

Overfitting occurs when a QSAR model performs exceptionally well on the training set but fails on external 

datasets. This is common when datasets are small or when complex ML models (e.g., neural networks) are 

used without proper validation [37]. Ensuring generalization requires balanced datasets, cross-validation 

strategies, and applicability domain assessment [28]. 
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8.4 Interpretability Issues in Advanced Models 

Traditional statistical QSAR models are easier to interpret because descriptor relationships can be directly 

analyzed. In contrast, modern machine learning approaches like random forests, SVMs, and deep neural 

networks often act as "black-box" systems, making it difficult for researchers to understand the contributions 

of individual molecular features [43]. Techniques such as SHAP and feature importance analysis help but do 

not fully resolve interpretability concerns. 

8.5 Applicability Domain (AD) Constraints 

The applicability domain defines the chemical space where the QSAR model makes reliable predictions. 

Predictions made outside this domain may be inaccurate or misleading [23]. Many published QSAR models 

fail to rigorously define or validate their AD, limiting their reliability in real-world drug design workflows. 

8.6 Reproducibility and Standardization Issues 

Different software tools, descriptor sets, modeling techniques, and validation procedures make reproducibility 

difficult. Two researchers using the same dataset may still produce different QSAR models due to choices in 

preprocessing, scaling, or descriptor generation [20]. This lack of standardization often reduces the confidence 

of regulatory agencies in QSAR-based decisions. 

9. Future Perspectives and Emerging Trends in QSAR 

QSAR modeling continues to evolve with 

advancements in computational power, artificial 

intelligence, and molecular data generation 

technologies. The future of QSAR lies in 

improving predictive accuracy, enhancing 

interpretability, and integrating 

multidimensional data sources to build more 

comprehensive models [37]. Several emerging 

trends indicate how QSAR will shape the next 

generation of drug discovery workflows. 

9.1 Integration of Multi-Omics Data 

Modern drug discovery increasingly relies on 

genomics, proteomics, transcriptomics, and 

metabolomics data. Integrating these datasets 

with QSAR enables a deeper understanding of 

biological mechanisms and facilitates 

mechanism-driven drug design [12]. Multi-omics–enhanced QSAR models can predict not only activity but 

also pathway-specific effects and differential responses across patient populations. 

9.2 Deep Learning and Graph-Based QSAR 

Deep learning, especially Graph Neural Networks (GNNs), is transforming QSAR modeling by learning 

directly from molecular graphs instead of manually crafted descriptors. GNN-based QSAR models can capture 

atomic interactions, stereochemistry, and 3D conformations more effectively than traditional methods [40]. 

Emerging architectures such as attention-based graph transformers offer improved accuracy and feature 

interpretability. 

 

 

http://www.jaafr.org/


                                                                 © 2025 JAAFR | Volume 3, Issue 11 November 2025 | ISSN: 2984-889X | JAAFR.ORG 

JAAFR2511357 Journal of Advance and Future Research (www.jaafr.org)  

 

229 

9.3 Automated QSAR (Auto-QSAR) Platforms 

Auto-QSAR systems automate descriptor calculation, model selection, hyperparameter tuning, and validation. 

These platforms reduce human bias, improve reproducibility, and allow rapid deployment of predictive models 

[23]. Integration with cloud computing enables large-scale virtual screening and real-time model updates. 

9.4 Integration with Molecular Dynamics and Docking 

Hybrid methodologies combining QSAR with molecular docking, MD simulations, and free-energy 

calculations offer more reliable predictions of ligand–target interactions. Such integrated models reduce false 

positives and enhance the accuracy of lead prioritization [28]. 

9.5 Explainable AI (XAI) for QSAR 

A major future direction is improving the transparency of AI-based QSAR models. Explainable AI tools such 

as SHAP values, attention maps, and counterfactual analysis aim to make deep-learning QSAR models 

interpretable for chemists, toxicologists, and regulatory scientists [43]. This will strengthen trust and 

regulatory acceptance. 

9.6 Federated Learning and Privacy-Preserving QSAR 

Pharmaceutical companies often hesitate to share proprietary chemical data. Federated learning enables 

multiple institutions to train QSAR models collaboratively without exchanging raw data, preserving 

confidentiality while improving model robustness [39]. 

9.7 Quantum Computing for QSAR 

Quantum machine learning algorithms are being explored to accelerate descriptor generation, molecular 

feature extraction, and predictive modeling. Although still in early stages, quantum-enhanced QSAR could 

significantly speed up complex computations and allow analysis of ultra-large chemical spaces [16]. 

10. Conclusion 

QSAR modeling has become an indispensable tool in modern drug discovery, enabling rapid prediction of 

biological activity, toxicity, and drug-like properties using computational approaches. From traditional linear 

models to advanced AI- and deep learning–driven frameworks, QSAR continues to evolve in response to 

growing chemical data availability and computational advancements [12]. The integration of multi-omics data, 

graph neural networks, automated QSAR workflows, and explainable AI is reshaping QSAR into a more 

transparent, robust, and biologically relevant predictive platform [37]. 

Despite its advancements, QSAR modeling still faces significant challenges related to data quality, descriptor 

selection, applicability domain, and model interpretability. Addressing these limitations through improved 

standardization, curated datasets, and interpretable machine learning techniques is essential for ensuring the 

reliability and regulatory acceptance of QSAR-driven decisions in drug development [23]. Future directions—

including federated learning, hybrid simulation workflows, and quantum-enhanced computation—promise to 

elevate QSAR capabilities and expand its application in personalized medicine, large-scale virtual screening, 

and safety assessment [39]. 

Overall, QSAR remains a powerful and evolving methodology that continues to streamline drug discovery 

workflows, reduce experimental burden, and accelerate the identification of safe and effective therapeutic 

candidates. 
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