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Abstract

Quantitative Structure—Activity Relationship (QSAR) modeling is an essential computational approach used
to predict the biological activity of chemical compounds based on their molecular structure. It enables rapid
virtual screening, reduces the need for laboratory testing, and supports efficient lead identification and
optimization in drug discovery. QSAR models are developed through a systematic workflow that includes
dataset preparation, descriptor calculation, feature selection, model building, and validation. With the
advancement of computational tools, 3D-QSAR and machine-learning-based QSAR models have
significantly improved predictive accuracy and reliability. This review provides a comprehensive overview of
the principles, methods, applications, and future directions of QSAR modeling in modern drug development.
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1. Introduction

Drug discovery is a complex, expensive, and time-consuming process that traditionally relies on experimental
screening of large chemical libraries. This approach often leads to high failure rates due to poor
pharmacological activity, toxicity, or unfavorable pharmacokinetic properties [1]. To overcome these
challenges, computational drug design methods have become increasingly important. Among these,
Quantitative Structure—Activity Relationship (QSAR) modeling has emerged as one of the most widely used
tools for predicting biological activity based on the structural and physicochemical features of molecules [2].

QSAR is built on the hypothesis that the biological activity of a compound is a function of its chemical
structure. By converting molecular structures into numerical descriptors and correlating them with biological
responses through statistical or machine-learning models, QSAR enables researchers to identify promising
drug candidates without extensive laboratory testing [3]. This significantly reduces development costs,
accelerates lead optimization, and improves decision-making in early drug discovery.
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Modern advancements—including machine learning, high-throughput screening data, and 3D-QSAR
techniques—have further strengthened the predictive capability of QSAR models, making them integral to the
design of new therapeutic agents across various disease areas [4]. The aim of this review is to explore the
principles, methodologies, applications, strengths, limitations, and future prospects of QSAR in drug
discovery and development.
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2. Fundamentals of QSAR Modeling
2.1 Definition of QSAR

Quantitative Structure—Activity Relationship (QSAR) modeling is a computational technique that establishes
a mathematical relationship between the chemical structure of a compound and its biological activity. The
basic principle assumes that molecules with similar structures exhibit similar pharmacological effects,
allowing biological responses to be predicted from structural information alone [5]. This makes QSAR a
powerful tool for identifying new drug candidates even before synthesis.

2.2 Types of QSAR Models

QSAR approaches have evolved significantly, resulting in multiple types based on dimensionality and the
nature of descriptors used.

a. ID-QSAR

Uses simple physicochemical parameters such as pKa, logP, or molecular weight to correlate with biological
activity. It is the earliest and simplest form of QSAR but has limited structural representation [6].

b. 2D-QSAR

Also known as classical QSAR, it incorporates descriptors such as hydrophobicity (Hansch analysis),
electronic parameters, steric factors, and fragment contributions. Methods like Multiple Linear Regression
(MLR) and Free—Wilson analysis are commonly used to build models [7].

¢. 3D-QSAR

Three-dimensional QSAR evaluates how spatial arrangement and molecular fields affect activity. The most
widely used 3D-QSAR methods are:
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e CoMFA (Comparative Molecular Field Analysis)
Examines steric and electrostatic fields around aligned molecules [8].

o CoMSIA (Comparative Molecular Similarity Indices Analysis)
Incorporates additional fields such as hydrophobicity and hydrogen-bond donor/acceptor features for
improved accuracy [9].

d. Higher-Dimensional QSAR (4D, 5D, 6D QSAR)

Advanced QSAR models integrate molecular dynamics, multiple conformations, solvation effects, and
receptor flexibility. These approaches improve prediction reliability but require higher computational
resources [10].

2.3 Basic Principle of QSAR Equation
A classical QSAR model generally follows the mathematical form:
Activity = f(Physicochemical Descriptors + Structural Descriptors)
Where:

e Activity = biological response

e Descriptors = numerical representation of molecular features

e f=regression or machine-learning technique

The quality of a QSAR model depends on:

* relevance of descriptors

* dataset quality

* statistical validation

» predictive performance on external compounds [11]

QSAR equations allow researchers to predict the activity of untested molecules and guide structural
modifications for improved potency or lower toxicity.
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3. Molecular Descriptors Used in QSAR

Molecular descriptors are numerical values that represent the structural, physicochemical, and geometric
properties of compounds. They are essential for building QSAR models because they convert chemical
structures into machine-readable data. The quality of these descriptors directly influences the accuracy and
predictability of a QSAR model [12].

3.1 Physicochemical Descriptors

Physicochemical descriptors represent intrinsic chemical properties that often correlate strongly with
pharmacokinetics and pharmacodynamics.

v LogP (Partition Coefficient)

Indicates lipophilicity, which affects membrane permeability and drug absorption [13].

v pKa

Represents ionization behavior of functional groups, influencing solubility and receptor binding [14].
v Molecular Weight (MW)

Higher MW compounds often have reduced permeability and may violate drug-likeness rules [15].
v Polar Surface Area (PSA)

Measures the surface area formed by polar atoms; strongly associated with oral bioavailability and blood—
brain barrier penetration [16].

Physicochemical descriptors help identify optimal ranges for drug-like properties.

3.2 Structural Descriptors

Structural descriptors capture topological and connectivity-based information about molecules.
v Topological Indices

Include Wiener index, Zagreb index, and Kier—Hall indices; these reflect branching, molecular shape, and
connectivity patterns [17].

v Connectivity Indices

Describe how atoms are linked within the structure and help differentiate isomers with similar formulas but
different shapes.

These descriptors are essential for modeling activity dependent on 2D structure.
3.3 Quantum Chemical Descriptors

Quantum descriptors originate from quantum mechanical calculations and describe electronic distribution in
molecules.

v HOMO (Highest Occupied Molecular Orbital)

Indicates electron-donating ability.
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v LUMO (Lowest Unoccupied Molecular Orbital)
Indicates electron-accepting ability.
v Dipole Moment
Reflects charge separation within a molecule and influences binding affinity [18].
Quantum descriptors are particularly useful for understanding drug—receptor interactions.
3.4 Geometrical Descriptors
Geometric descriptors represent 3D characteristics of molecules.
These include:
e Molecular volume
e Surface area
e Shape indices
e Diameter and radius measurements

Geometrical descriptors help improve prediction accuracy in 3D-QSAR and pharmacophore-based modeling
[19].

Why Descriptors Matter in QSAR

A reliable QSAR model requires descriptors that are:
o Relevant to the biological activity
e Non-redundant

o Statistically significant
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e Chemically interpretable

Descriptor selection is one of the most critical steps in QSAR modeling, as irrelevant descriptors reduce model
performance.

4. Methods Used in QSAR Model Development

QSAR model development follows a systematic workflow to ensure that the predictions are reliable,
reproducible, and statistically significant. The accuracy of a QSAR model depends on how effectively each
step—data preparation, descriptor selection, model building, and validation—is performed [20].
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4.1 Data Collection and Curation

High-quality data is the foundation of any QSAR model. Poor or inconsistent datasets lead to inaccurate
predictions.

v Data Sources

Common databases include:

e ChEMBL
e PubChem
e DrugBank

e BindingDB
These provide experimentally validated bioactivity data required for model construction.
v Data Cleaning Steps
e Removal of duplicate compounds
e Correction of structural errors
o Standardization of chemical representations (tautomer correction, charge normalization)
o Filtering compounds outside activity ranges
e Outlier detection using statistical tools

Proper curation prevents noise and improves model robustness [21].
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4.2 Descriptor Calculation

Descriptors convert chemical structures into numerical values that represent their features.
Common descriptor calculation tools include:

e PaDEL-Descriptor

e Dragon

e Molecular Operating Environment (MOE)

e ChemOffice

« RDKit

These tools generate thousands of descriptors including physicochemical, quantum mechanical, and
topological descriptors [22].

Descriptor quality strongly impacts the predictive performance of the model.
4.3 Feature Selection Methods

Feature selection removes redundant or irrelevant descriptors to prevent overfitting and improve
interpretability.

v Principal Component Analysis (PCA)

Reduces dimensionality while retaining maximum variance.

v Genetic Algorithms (GA)

Uses evolutionary strategies to select the most relevant descriptors for the target activity [23].
v Stepwise Regression

Adds or removes descriptors sequentially based on statistical significance.

v Variance Inflation Factor (VIF)

Removes descriptors that show multicollinearity.

Feature selection ensures the model remains simple, interpretable, and statistically sound.

4.4 Model Building Techniques

Several statistical and machine-learning algorithms are used to build QSAR models depending on dataset type
and complexity.

v Multiple Linear Regression (MLR)

Simple and interpretable; widely used for classical QSAR.
v Partial Least Squares (PLS)

Handles collinearity and high-dimensional data effectively.
v k-Nearest Neighbors (KNN)

Predicts based on similarity between molecules.
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v Artificial Neural Networks (ANN)

Captures nonlinear relationships; useful in complex datasets [24].

v Support Vector Machines (SVM)

Provides excellent performance with optimal hyperplane classification.

The choice of algorithm depends on dataset size, descriptor type, and desired model interpretability.
4.5 Internal and External Validation

Model validation ensures that the QSAR model is reliable and has real predictive power.

v Internal Validation

Measures model stability using techniques such as:
e Leave-One-Out Cross Validation (LOO)
e Leave-Many-Out (LMO)
e k-fold cross-validation

Internal metrics include R?, Q?, and RMSE.
v External Validation

Evaluates model predictive ability using an independent test set not used in training.
Metrics include:

e R2? pred

e MAE

e Concordance Correlation Coefficient
A model is considered acceptable only if it performs well in both internal and external validation [25].
5. 3D-QSAR Approaches

3D-QSAR methods analyze how the three-dimensional arrangement of atoms and molecular fields influences
the biological activity of compounds. Unlike 2D-QSAR—which relies on physicochemical and structural
descriptors—3D-QSAR incorporates spatial orientation and intermolecular interactions, making it more
reliable for receptor-binding predictions [26].

3D-QSAR is widely used in lead optimization, SAR interpretation, and understanding critical molecular
regions required for activity. The two most established and widely used 3D-QSAR techniques are
Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices
Analysis (CoMSIA).

5.1 Comparative Molecular Field Analysis (CoMFA)

CoMFA evaluates steric and electrostatic interactions surrounding aligned molecules to determine which
regions enhance or reduce biological activity.

v Key Steps in CoOMFA
1. Molecular Alignment — All molecules must be aligned to a common pharmacophore template.

2. Grid Generation — A 3D grid is placed around the aligned molecules.

JAAFR2511357 Journal of Advance and Future Research (www.jaafr.org)



http://www.jaafr.org/

© 2025 JAAFR | Volume 3, Issue 11 November 2025 | ISSN: 2984-889X | JAAFR.ORG
3. Field Calculation — Steric and electrostatic fields are calculated at each grid point.

4. PLS Analysis — Partial Least Squares regression establishes relationships between fields and activity.

v Advantages
o High interpretability
o Useful contour maps for medicinal chemists

o Strong predictive ability for structurally related compounds [27]

v Limitations
o Highly dependent on molecular alignment
o Sensitive to conformational changes and grid placement
5.2 Comparative Molecular Similarity Indices Analysis (CoMSIA)
CoMSIA extends the CoMFA concept by analyzing additional molecular similarity fields.
v Similarity Index Fields Used in CoMSIA
o Steric
o Electrostatic
e Hydrophobic
e Hydrogen-bond donor

e Hydrogen-bond acceptor

CoMFA CoMSIA
(Comparative Moleculal Field Analysis) (Comparative Similarity Indicies Analysis)
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v Advantages Over CoOMFA

o Less sensitive to alignment errors

e Generates smoother and more interpretable contour maps

o Better representation of hydrophobic and H-bond interactions [28]
v Applications
CoMSIA is commonly applied in:

o Identifying key binding regions in drug candidates

e Optimization of lead compounds

e Mapping critical hydrophobic and hydrophilic zones around molecules
5.3 Other 3D-QSAR Techniques
In addition to CoMFA and CoMSIA, several modern methods are used to enhance prediction quality.
v Pharmacophore-based 3D-QSAR

Uses 3D arrangements of key features such as hydrogen-bond donors, acceptors, aromatic rings, and
hydrophobic centers to predict activity.

v Grid-Independent Descriptors (GRIND)

Avoids molecular alignment issues and uses distance-based descriptors [29].

v Molecular Field Topology Analysis (MFTA)

Combines topological and 3D field information to generate robust predictive models.

These newer approaches improve the robustness of 3D-QSAR by reducing alignment dependency and
incorporating multiple molecular properties.

6. Machine Learning and Al in QSAR

Machine learning (ML) and artificial intelligence (AI) have significantly advanced QSAR modeling by
enabling the analysis of large, complex datasets and capturing nonlinear relationships that traditional statistical
methods cannot detect. With the availability of big chemical datasets and computational power, ML-based
QSAR models now offer higher predictive accuracy, greater robustness, and broader applicability across
diverse chemical spaces [30].

Al-driven QSAR is increasingly used in early-stage drug discovery for virtual screening, lead optimization,
prediction of ADMET properties, and identifying toxicological risks before synthesis.

6.1 Traditional Machine-Learning Algorithms in QSAR

Several classical ML algorithms remain widely used due to their balance of performance, interpretability, and
computational efficiency.

v Decision Trees (DT)

Provide clear interpretability by splitting data into hierarchical decision rules. Useful for small to medium-
sized datasets [31].
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v Random Forest (RF)

An ensemble of decision trees that reduces overfitting and improves accuracy. Highly effective for descriptor-
rich datasets.

v Support Vector Machines (SVM)

One of the most popular ML methods for QSAR. Creates optimal hyperplanes to separate data and handles
high-dimensional descriptors well [32].

v k-Nearest Neighbors (KNN)

Predicts activity based on similarity to the nearest compounds. Simple yet eftfective for similarity-driven drug
design.

These algorithms have formed the backbone of computational drug discovery for decades.

6.2 Deep Learning Methods in QSAR

Deep learning (DL) models excel in discovering complex nonlinear patterns in chemical datasets.
v Artificial Neural Networks (ANNs)

Multilayer networks capable of modeling nonlinear relationships between descriptors and activity. Useful for
large datasets but prone to overfitting without proper tuning [33].

v Convolutional Neural Networks (CNNs)

Can analyze molecular images, fingerprints, and 3D voxel grids. Widely applied in structure-based QSAR and
binding affinity prediction.

v Recurrent Neural Networks (RNNs) / LSTMs

Process sequential representations such as SMILES strings, enabling direct learning from chemical structure
text.

v Graph Neural Networks (GNNs)

One of the most modern approaches.
They treat molecules as graphs (atoms = nodes, bonds = edges) and learn chemical features directly without
descriptors [34].

GNNs have shown exceptional performance because they learn structural relationships natively from
molecular graphs.

6.3 Advantages of ML- and AI-Based QSAR
o Handles high-dimensional descriptor sets efficiently
o Improved predictive accuracy over classical QSAR
e Learns complex nonlinear relationships
e Reduces need for manual descriptor engineering (especially in GNN-based models)

o Suitable for large datasets obtained from high-throughput screening
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o Improves virtual screening hit rates, saving time and cost in drug discovery [35]
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6.4 Challenges and Limitations

Despite significant progress, ML- and Al-based QSAR approaches face several challenges.
v Data Quality Issues

Noisy, imbalanced, or inconsistent datasets reduce predictive accuracy.

v Interpretability Problems

Deep learning models often act as “black boxes,” making it difficult to understand which features drive
predictions.

v Overfitting Risk

Large descriptor sets with limited data can cause models to learn noise instead of patterns.

v Generalizability
Models may perform poorly when predicting activity for structurally novel compounds.

Addressing these limitations requires better curation, explainable Al (XAI) techniques, and integration of
experimental validation.

6.5 Machine Learning and AI-Driven QSAR Models

Machine Learning (ML) and Artificial Intelligence (AI) have significantly enhanced the predictive capabilities
and automation potential of QSAR modeling. Traditional QSAR relied mainly on linear statistical techniques
such as multiple linear regression, which often fail to capture complex nonlinear relationships between
molecular descriptors and biological activity. In contrast, ML algorithms can learn intricate patterns from high-
dimensional chemical data, allowing the development of more robust and generalizable models [37].

Common ML methods used in QSAR include Random Forests (RF), Support Vector Machines (SVM), k-
Nearest Neighbors (k-NN), Gradient Boosting Machines (GBM), and Artificial Neural Networks (ANN).
RF offers strong performance on noisy datasets and provides variable-importance metrics, making it widely
used in ligand-based modeling [38]. SVM is effective for datasets with clear boundaries between active and
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inactive molecules, especially when coupled with kernel functions to capture nonlinear mappings [39]. ANN
and deep learning models, including convolutional and graph neural networks (GNNs), have shown
remarkable performance due to their ability to automatically extract molecular features without predefined
descriptors [40].

Deep learning—based QSAR approaches represent a major advancement in modern drug design. GNNs treat
molecules as graphs and learn atom-level interactions directly, bypassing the need for handcrafted descriptors.
These models have demonstrated superior performance in activity prediction, toxicity profiling, and virtual
screening, especially when trained on large chemical libraries [41]. Reinforcement learning has also emerged
as a powerful tool for de novo molecule generation, enabling Al systems to design novel compounds optimized
for potency, selectivity, and ADMET properties [42].

Despite their advantages, ML-driven QSAR models face challenges such as data imbalance, overfitting,
limited interpretability, and the requirement for large curated datasets. Techniques like feature importance
analysis, SHAP (Shapley Additive Explanations), and attention mechanisms are increasingly used to improve
model transparency and trust in predictions [43]. As computational power continues to grow, Al and ML are
expected to further transform QSAR by enabling automated model building, ultra-large virtual screening, and
integration with multi-omics data.

7. Applications of QSAR in Drug Discovery and Development

QSAR modeling plays a crucial role in multiple stages of drug discovery, from early screening to lead
optimization. By providing predictive insights into biological activity, toxicity, and pharmacokinetic
properties, QSAR helps reduce experimental workload and accelerates the identification of promising
chemical entities [28]. Its widespread applications span therapeutic target classes, pharmacological pathways,
and toxicity assessment frameworks.
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7.1 Lead Identification

QSAR assists in screening large chemical libraries to prioritize molecules that are likely to show biological
activity. Instead of synthesizing and testing thousands of compounds, researchers can narrow down candidates
using predictive models based on structural descriptors [12]. Machine learning—enhanced QSAR models
further improve the accuracy of early-stage hit prediction, especially for receptor-binding studies and enzyme
inhibition assays [39].

7.2 Lead Optimization

During lead optimization, QSAR models help refine molecular structures to enhance potency, selectivity, and
drug-like properties. Descriptors related to hydrophobicity, electronic character, and molecular shape guide
chemists in modifying functional groups to achieve better biological responses [ 16]. Iterative cycles of QSAR
prediction and molecular redesign significantly reduce development time and cost.

7.3 ADMET Prediction

A major advantage of QSAR is its ability to predict Absorption, Distribution, Metabolism, Excretion, and
Toxicity (ADMET) properties before laboratory testing. QSAR models are extensively used to evaluate
hepatotoxicity, cardiotoxicity, mutagenicity, blood—brain barrier permeability, and metabolic stability [23].
This reduces drug attrition rates by eliminating compounds with poor safety profiles.

7.4 Toxicity and Environmental Risk Assessment

Regulatory agencies often rely on QSAR for evaluating the safety of chemicals when experimental testing is
limited. Predictive toxicology frameworks use QSAR to assess carcinogenicity, aquatic toxicity, skin
sensitization, and endocrine disruption [18]. Environmental chemistry programs also use QSAR to estimate
the persistence and bioaccumulation potential of industrial chemicals.

7.5 Virtual Screening and High-Throughput Workflows

QSAR models are frequently integrated with virtual screening pipelines, allowing significant computational
filtering of chemical space. When combined with molecular docking or pharmacophore modeling, QSAR
enhances the selection of compounds with optimal binding affinity and physicochemical compatibility [20].
High-throughput QSAR (HT-QSAR) approaches can evaluate millions of compounds in silico, making them
fundamental in modern drug design.

8. Challenges and Limitations of QSAR Modeling

Despite its wide applicability and success, QSAR modeling faces several scientific, computational, and
methodological limitations. These challenges often arise from the complexity of biological systems, data
quality issues, and model interpretability constraints. Understanding these limitations is essential for
developing reliable and reproducible QSAR models in drug discovery [12].
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8.1 Data Quality and Dataset Limitations

The reliability of a QSAR model is directly dependent on the quality of the dataset used to build it. Incomplete,
inconsistent, or noisy biological activity data can lead to weak predictive performance [18]. Experimental
variability between laboratories, measurement errors, and differences in assay conditions introduce additional
uncertainty [23]. Furthermore, small datasets limit the ability of machine learning algorithms to learn complex
structure—activity relationships.

8.2 Descriptor Selection and Dimensionality Issues

Molecular descriptors represent chemical information numerically, but selecting meaningful descriptors is
challenging. Too many descriptors cause overfitting, while too few descriptors reduce model accuracy [16].
High-dimensional descriptor spaces also complicate model training and require feature selection techniques
such as PCA or recursive feature elimination [39].

8.3 Overfitting and Model Generalization

Overfitting occurs when a QSAR model performs exceptionally well on the training set but fails on external
datasets. This is common when datasets are small or when complex ML models (e.g., neural networks) are
used without proper validation [37]. Ensuring generalization requires balanced datasets, cross-validation
strategies, and applicability domain assessment [28].
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8.4 Interpretability Issues in Advanced Models

Traditional statistical QSAR models are easier to interpret because descriptor relationships can be directly
analyzed. In contrast, modern machine learning approaches like random forests, SVMs, and deep neural
networks often act as "black-box" systems, making it difficult for researchers to understand the contributions
of individual molecular features [43]. Techniques such as SHAP and feature importance analysis help but do
not fully resolve interpretability concerns.

8.5 Applicability Domain (AD) Constraints

The applicability domain defines the chemical space where the QSAR model makes reliable predictions.
Predictions made outside this domain may be inaccurate or misleading [23]. Many published QSAR models
fail to rigorously define or validate their AD, limiting their reliability in real-world drug design workflows.

8.6 Reproducibility and Standardization Issues

Different software tools, descriptor sets, modeling techniques, and validation procedures make reproducibility
difficult. Two researchers using the same dataset may still produce different QSAR models due to choices in
preprocessing, scaling, or descriptor generation [20]. This lack of standardization often reduces the confidence
of regulatory agencies in QSAR-based decisions.

9. Future Perspectives and Emerging Trends in QSAR

QSAR modeling continues to evolve with
advancements in computational power, artificial
intelligence, and molecular data generation
technologies. The future of QSAR lies in 9
improving predictive accuracy, enhancing :
interpretability, and integrating
multidimensional data sources to build more
comprehensive models [37]. Several emerging
trends indicate how QSAR will shape the next
generation of drug discovery workflows.

9.1 Integration of Multi-Omics Data

Modern drug discovery increasingly relies on

genomics, proteomics, transcriptomics, and
metabolomics data. Integrating these datasets
with QSAR enables a deeper understanding of
biological  mechanisms and  facilitates
mechanism-driven drug design [12]. Multi-omics—enhanced QSAR models can predict not only activity but
also pathway-specific effects and differential responses across patient populations.

9.2 Deep Learning and Graph-Based QSAR

Deep learning, especially Graph Neural Networks (GNNs), is transforming QSAR modeling by learning
directly from molecular graphs instead of manually crafted descriptors. GNN-based QSAR models can capture
atomic interactions, stereochemistry, and 3D conformations more effectively than traditional methods [40].
Emerging architectures such as attention-based graph transformers offer improved accuracy and feature
interpretability.
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9.3 Automated QSAR (Auto-QSAR) Platforms

Auto-QSAR systems automate descriptor calculation, model selection, hyperparameter tuning, and validation.
These platforms reduce human bias, improve reproducibility, and allow rapid deployment of predictive models
[23]. Integration with cloud computing enables large-scale virtual screening and real-time model updates.

9.4 Integration with Molecular Dynamics and Docking

Hybrid methodologies combining QSAR with molecular docking, MD simulations, and free-energy
calculations offer more reliable predictions of ligand—target interactions. Such integrated models reduce false
positives and enhance the accuracy of lead prioritization [28].

9.5 Explainable AI (XAI) for QSAR

A major future direction is improving the transparency of Al-based QSAR models. Explainable Al tools such
as SHAP values, attention maps, and counterfactual analysis aim to make deep-learning QSAR models
interpretable for chemists, toxicologists, and regulatory scientists [43]. This will strengthen trust and
regulatory acceptance.

9.6 Federated Learning and Privacy-Preserving QSAR

Pharmaceutical companies often hesitate to share proprietary chemical data. Federated learning enables
multiple institutions to train QSAR models collaboratively without exchanging raw data, preserving
confidentiality while improving model robustness [39].

9.7 Quantum Computing for QSAR

Quantum machine learning algorithms are being explored to accelerate descriptor generation, molecular
feature extraction, and predictive modeling. Although still in early stages, quantum-enhanced QSAR could
significantly speed up complex computations and allow analysis of ultra-large chemical spaces [16].

10. Conclusion

QSAR modeling has become an indispensable tool in modern drug discovery, enabling rapid prediction of
biological activity, toxicity, and drug-like properties using computational approaches. From traditional linear
models to advanced Al- and deep learning—driven frameworks, QSAR continues to evolve in response to
growing chemical data availability and computational advancements [12]. The integration of multi-omics data,
graph neural networks, automated QSAR workflows, and explainable Al is reshaping QSAR into a more
transparent, robust, and biologically relevant predictive platform [37].

Despite its advancements, QSAR modeling still faces significant challenges related to data quality, descriptor
selection, applicability domain, and model interpretability. Addressing these limitations through improved
standardization, curated datasets, and interpretable machine learning techniques is essential for ensuring the
reliability and regulatory acceptance of QSAR-driven decisions in drug development [23]. Future directions—
including federated learning, hybrid simulation workflows, and quantum-enhanced computation—promise to
elevate QSAR capabilities and expand its application in personalized medicine, large-scale virtual screening,
and safety assessment [39].

Overall, QSAR remains a powerful and evolving methodology that continues to streamline drug discovery
workflows, reduce experimental burden, and accelerate the identification of safe and effective therapeutic
candidates.
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